
CENG3430 Rapid Prototyping of Digital Systems

Lecture 08:

Rapid Prototyping (II) –

Embedded Operating System

Ming-Chang YANG

mcyang@cse.cuhk.edu.hk

mailto:mcyang@cse.cuhk.edu.hk

Prototyping Styles with Zynq ZedBoard

CENG3430 Lecture 07: Integration of ARM and FPGA 2

Hardware Base

System

Board Support

Package

Operating

System

Applications

Hardware Base

System

Board Support

Package

Bare-metal

Applications

Xilinx

Vivado

(HDL)

Xilinx

SDK

(C/C++)

hardware

Program

Logic

(PL)

SDK

(Shell, C,

Java, …)

Process

System

(PS)

software

Programmable

Logic Design

Style 1)

FPGA (PL)

VHDL or Verilog

Programming

(Lec. 01~06 & 10)

Style 2)

ARM + FPGA

ARM Programming

& IP Block Design

(Lec. 07 & 09)

Style 3)

Embedded OS

Shell Script &
sysfs EMIO GPIO

(Lec. 08)

Outline

• Embedded Operating System

– Why Embedded Operating Systems

– Types of Operating Systems

– Zynq Operating Systems

• Case Study: Embedded Linux

– Linux System Overview

– Linux Kernel

– Linux GPIO Driver: GPIO sysfs Interface

– Shell Script

– Lab 09: Linux GPIO Stopwatch

CENG3430 Lec08: Embedded Operating System 3

Why Embedded Operating Systems

• An embedded OS is not necessary for all digital

systems, but it has the following advantages:

– Reducing Time to Market

• OS vendors provide support for various architectures and platforms.

– If a software is mainly developed for an OS rather than a device, it is

easy to be moved to another new architecture or device.

– Make Use of Existing Features

• Embedded OSs offer support for many validated features which

would otherwise have to be developed by the system designer.

– Driver-level support provides the low-level drivers that makes the

connection between the embedded processor and the device.

– Graphical interface-level support deals with the high-level graphical

content that is to be displayed.

– Reduce Maintenance and Development Costs

• By making use of an embedded OS, the amount of custom code

that needs to be developed and tested can be reduced.
CENG3430 Lec08: Embedded Operating System 4

Types of Operating Systems

• There are a number of possibilities when determining

the type of OS to use on an embedded system:

– Standalone Operating Systems (a.k.a., Bare-metal OS)

• A simple OS that provides a very low-level of software modules that

the system can use to access processor-specific functions.

• A standalone OS enables close control over code execution but is

fairly limited in terms of functionality.

– Real-Time Operating Systems (RTOS)

• The defining feature of a RTOS is the degree of determinism that is

guaranteed by the scheduler.

• The purpose of a RTOS is NOT to achieve a high throughput, but

instead to respond both quickly and predictably for a given task.

– Other Embedded Operating Systems

• For applications that require high system performance, another type

of OS is usually required, such as Linux and Android.

CENG3430 Lec08: Embedded Operating System 5

Zynq Operating Systems

• There’re many Zynq-compatible embedded OSs:

– Xilinx Zynq-Linux: An open source OS based on the 3.0

Linux kernel with additions such as BSP and device drivers.

– Petalogix® - Petalinux: It provides a complete package to

build, test, develop and deploy embedded Linux systems.

– Xillybus – Xillinux: A desktop distribution of Linux that can

run a full graphical desktop environment on the Zedboard.

• A keyboard and mouse can be attached via the USB On-The-Go

port, while a monitor can be connected to the provided VGA port.

– FreeRTOS: a lightweight real-time OS that is available for a

wide range of devices and processor architectures.

– Further Operating Systems: There are a large number of

OSs for Zynq which are provided by Xilinx partners:

• E.g., Adeneo Embedded Windows CE 7.0, Linux, Android and QNX.

CENG3430 Lec08: Embedded Operating System 6

Outline

• Embedded Operating System

– Why Embedded Operating Systems

– Types of Operating Systems

– Zynq Operating Systems

• Case Study: Embedded Linux

– Linux System Overview

– Linux Kernel

– Linux GPIO Driver: GPIO sysfs Interface

– Shell Script

– Lab 09: Linux GPIO Stopwatch

CENG3430 Lec08: Embedded Operating System 7

Linux System Overview

• Below shows a generalized GNU/Linux System:

CENG3430 Lec08: Embedded Operating System 8

SCI facilitates function

calls from the user space

to the kernel of system.

Hardware devices are

abstracted from the user-

level by the kernel space.

Applications run on top of

the kernel in user-space.

Kernel provides a set of

tools with which the user

can interact with hardware.

Platform-specific code:

BSP (board support package).

Linux Kernel

• Linux kernel is of

subsystems providing

required services:

– Memory Management

– Process Management

– Virtual File System

– Device Drivers

• A system call provides

interaction between

user application and

kernel services.

– Where direct calls are

NOT allowed.
CENG3430 Lec08: Embedded Operating System 9

.app

Software Stopwatch with Zynq-Linux?

CENG3430 Lec08: Embedded Operating System 10

The Zynq-Linux can be

performed on the ARM

CPU (PS) of ZedBoard.

• Question: Can we also
design an application to
realize a software
stopwatch on top of
Zynq-Linux?

• Answer: Yes, through
the GPIO interface.

CENG3430 Lec08: Embedded Operating System 11

• General-purpose input/output (GPIO):

– Uncommitted digital signal pins on an integrated circuit or

board whose behavior—including whether it acts as input

or output—is controllable by the user at run time.

• Zynq-Linux defines 60 GPIO signals between PS and

PL via the extended multiplexed I/O (EMIO) interface
to control the pins on the board (see system.ucf):

– USB OTG Reset: processing_system7_0_GPIO<0>

– OLED: processing_system7_0_GPIO<1>~<6>

– LED: processing_system7_0_GPIO<7>~<14>

– Switches: processing_system7_0_GPIO<15>~<22>

– Buttons: processing_system7_0_GPIO<23>~<27>

– Pmod (JA~JD): processing_system7_0_GPIO<28>~<59>

(Note: These IDs should be shifted by 54 which is for MIO GPIOs.)

General-Purpose Input/Output (GPIO)

CENG3430 Lec08: Embedded Operating System

GPIO sysfs Interface

• One easiest way to control GPIO in Linux is through
the sysfs interface (/sys/class/gpio):

– sysfs is a pseudo file system provided by the Linux kernel

that exports information about various kernel subsystems,

hardware devices, and associated device drivers from the

kernel's device model to user space through virtual files.

12

User Applications (e.g., shell script, c/c++, etc.)

System Call Interface

Virtual File System (VFS)

GNU C Library

TmpFS

/dev

ProcFS

/proc

SysFS

/sys

VolFS

/, /home

DriveFS

/mnt/c

USER

SPACE

KERNEL

SPACE

Hardware (e.g., LED, Switch, Pmods, etc.)

.sh

R
 /
 W

virtual

files

Dash Shell Script (#/bin/sh)

• A shell script is a list of commands that can run by

the Unix shell directly in a sequential manner.

– Unix shell is a command line (or terminal) interpreter.

• Common commands of a shell script:

– Comment: # comment

– Arguments: $0, $1, $2, …

– Variable: $var

– Command: $(command) or `command`

– Expression: $((expression))

– Loop: for i in $(seq 1 n) do ... done;

– Function Call: function_name parameters

– Read from File: `cat file_path`;

– Write to File: echo $value > file_path;
CENG3430 Lec08: Embedded Operating System 13

Outline

• Embedded Operating System

– Why Embedded Operating Systems

– Types of Operating Systems

– Zynq Operating Systems

• Case Study: Embedded Linux

– Linux System Overview

– Linux Kernel

– Linux GPIO Driver: GPIO sysfs Interface

– Shell Script

– Lab 09: Linux GPIO Stopwatch

CENG3430 Lec08: Embedded Operating System 14

Lab 09: Linux GPIO Stopwatch

• In Lab 09, we will implement a software stopwatch by

controlling LED, Switch and Pmod seven-segment

display using the shell script language.

CENG3430 Lec08: Embedded Operating System 15

Booting the ZedBoard from SD Card

• The ZedBoard user specifies the method of booting /

programming via a set of jumper pins.

– The middle three are for specifying programming source.

CENG3430 Lec02: Introduction to ZedBoard 16

Cascaded: A single JTAG

connection is used to interface to

the debug access ports in both the

PS and PL.

The PLL mode determines whether

the process of configuring the

device includes a phase of waiting

for the PLL to lock

Zynq Development Setup

• Joint Test Action Group (JTAG): Downloading designs

onto the development board over JTAG

• Universal Asynchronous Receiver/Transmitter (UART)

and Terminal Applications: Interfacing and debugging

CENG3430 Lec02: Introduction to ZedBoard 17

Sample Script 1) read_sw.sh

#!/bin/sh

value=0;

for i in 0 1 2 3 4 5 6 7; # total 8 switches, GPIO ID from 69~76.

do

sw=$((76-$i));

sw_tmp=`cat /sys/class/gpio/gpio$sw/value`; # read the value

from the sw using corresponding gpioID

value=$(($value*2)); # adding the value in order, since we read

the binary value so using 2 instead of 10 here

value=$(($value+$sw_tmp));

done;

printf "0x%x %d\n" $value $value; # print out value in both

hexadecimal & decimal format

CENG3430 Lec08: Embedded Operating System 18

Sample Script 2) write_led.sh

#!/bin/sh

value=$(($1)); # arguments of the script (e.g., write_led 0xFF)

if [$value -ge 0]; then

for i in 0 1 2 3 4 5 6 7; # total 8 led, GPIO ID from 61~68

do

led=$(($i+61)); # i-th gpioID corresponding to led_i

echo $(($value&0x01)) > /sys/class/gpio/gpio$led/value; # use

bit-wise and '&' to get the right-most bit and write to i-th gpio

value=$(($value/2)); # using divide operation to remove the

previous right-most bit

done;

fi;

CENG3430 Lec08: Embedded Operating System 19

Sample Script 3) single_count_down.sh
#!/bin/sh
display() { # display function
value=$1 # the first argument is

the number will be show in seven-
segment
echo $2 >

/sys/class/gpio/gpio93/value; # the
second argument defines which seven-

segment will be used (gpio id 93 is
ssdcat)
for i in 0 1 2 3 4 5 6;
do
pin=$((92-$i));
if [$i -gt 2];
then
pin=$(($pin-4));
JA:82~85 / JB: 90~92

fi;
echo $(($value&0x01)) >

/sys/class/gpio/gpio$pin/value; #
output one segment

value=$(($value/2)); # move
to next segment

done;
}

seven-segment display patterns,
refer to Lab sheet 6, here we
represent them in decimal values
p0=126;
p1=48;
p2=109;
…
p15=71;

for i in $(seq 0 15); # display 0~15
do

idx=$((15-$i)); # count down the
number to be shown on the SSD

display $((p$idx)) 0; # invoke
the display function, argument #1 is
the pattern of the i-th number,
argument #2 is the ssdcat for
selecting the left/right seven-
segment

sleep 1; # delay one sec
done;

CENG3430 Lec08: Embedded Operating System 20

How to Run .sh Files?

• Give execute permission to your script:

chmod +x /path/to/yourscript.sh

• Run your script (“.” refers to current directory):

/path/to/yourscript.sh

./yourscript.sh

CENG3430 Lec08: Embedded Operating System 21

 Not necessary to have the file extension in Linux

Summary

• Embedded Operating System

– Why Embedded Operating Systems

– Types of Operating Systems

– Zynq Operating Systems

• Case Study: Embedded Linux

– Linux System Overview

– Linux Kernel

– Linux GPIO Driver: GPIO sysfs Interface

– Shell Script

– Lab 09: Linux GPIO Stopwatch

CENG3430 Lec08: Embedded Operating System 22

