HE P LKF

The Chinese University of Hong Kong

CENG3430 Rapid Prototyping of Digital Systems
Lecture 08:

Rapid Prototyping (Il) —
Embedded Operating System
Ming-Chang YANG

A .. .)
Ao I .:1 L iiiiiiiii: P
1§ , . ~
s]) h BEEE TE LLEURE e

bbbbbbbbbb

mailto:mcyang@cse.cuhk.edu.hk

Prototyping Styles with Zynq ZedBoard

Xilinx i SDK
ZYNQ SDK Barg m_etal Applications [|(Shell, C,
cic++) | Applications Java, ..
Operating
System Process
System
Board Support Board Support (PS)
Package Package
S N— W software
. hardware
\iﬂ/'g:jxo Programmable Hardware Base Hardware Base
' ' Program
HpL) | Logic Design System System gram
PL
Style 1) Style 2) Style 3) (FL

FPGA (PL) ARM + FPGA |Embedded OS

VHDL or Verilog ARM Programming Shell Script &
Programming & IP Block Design |sysfs EMIO GPIO

(Lec. 01~06 & 10) (Lec. 07 & 09) (Lec. 08)
CENG3430 Lecture 07: Integration of ARM and FPGA 2

Outline

 Embedded Operating System
— Why Embedded Operating Systems
— Types of Operating Systems
— Zynqg Operating Systems

« Case Study: Embedded Linux
— Linux System Overview
— Linux Kernel
— Linux GPIO Driver: GPIO sysfs Interface
— Shell Script
— Lab 09: Linux GPIO Stopwatch

CENG3430 Lec08: Embedded Operating System 3

Why Embedded Operating Systems

 An embedded OS is not necessary for all digital
systems, but it has the following advantages:

— Reducing Time to Market

« OS vendors provide support for various architectures and platforms.

— If a software is mainly developed for an OS rather than a device, it is
easy to be moved to another new architecture or device.

— Make Use of Existing Features
« Embedded OSs offer support for many validated features which
would otherwise have to be developed by the system designer.

— Driver-level support provides the low-level drivers that makes the
connection between the embedded processor and the device.

— Graphical interface-level support deals with the high-level graphical
content that is to be displayed.

— Reduce Maintenance and Development Costs

« By making use of an embedded OS, the amount of custom code

that needs to be developed and tested can be reduced.
CENG3430 Lec08: Embedded Operating System 4

Types of Operating Systems

* There are a number of possibilities when determining
the type of OS to use on an embedded system:

— Standalone Operating Systems (a.k.a., Bare-metal OS)

« Asimple OS that provides a very low-level of software modules that
the system can use to access processor-specific functions.

e A standalone OS enables close control over code execution but is
fairly limited in terms of functionality.
— Real-Time Operating Systems (RTOS)

* The defining feature of a RTOS is the degree of determinism that is
guaranteed by the scheduler.

* The purpose of a RTOS is NOT to achieve a high throughput, but
Instead to respond both quickly and predictably for a given task.

— Other Embedded Operating Systems

« For applications that require high system performance, another type
of OS is usually required, such as Linux and Android.

CENG3430 Lec08: Embedded Operating System 5

Zynq Operating Systems

* There're many Zyng-compatible embedded OSs:

— Xilinx Zyng-Linux: An open source OS based on the 3.0
Linux kernel with additions such as BSP and device drivers.

— Petalogix® - Petalinux: It provides a complete package to
build, test, develop and deploy embedded Linux systems.

— Xillybus = Xillinux: A desktop distribution of Linux that can
run a full graphical desktop environment on the Zedboard.

* A keyboard and mouse can be attached via the USB On-The-Go
port, while a monitor can be connected to the provided VGA port.

— FreeRTOS: a lightweight real-time OS that is available for a
wide range of devices and processor architectures.

— Further Operating Systems: There are a large number of
OSs for Zynq which are provided by Xilinx partners:
« E.g., Adeneo Embedded Windows CE 7.0, Linux, Android and QNX.

CENG3430 Lec08: Embedded Operating System 6

Outline

« Case Study: Embedded Linux
— Linux System Overview
— Linux Kernel

— Linux GPIO Driver: GPIO sysfs Interface
— Shell Script

CENG3430 Lec08: Embedded Operating System 7

Linux System Overview

« Below shows a generalized GNU/Linux System:

USER SPACE

.

(

USER APPLICATIONS

-

L

GNU C LIBRARY]

N
J > Applications run on top of
the kernel in user-space.

e

KERNEL

Kernel provides a set of
tools with which the user
can interact with hardware.

A

KERNEL SPACE

ARCHITECTURE-DEPENDENT CODE

Platform-specific code:

BSP (board support package).

HARDWARE DEVICES

=\ Hardware devices are
] abstracted from the user-

CENG3430 Lec08: Embedded Operating System

level by the kernel space.

O

Linux Kernel

USER APPLICATIONS J

* Linux kernel is of
subsystems providing GEEEP— |
required services: >l
— Memory Management
— Process Management

USER SPACE

Virtual N [h
Memory Process : i
— V”‘tu al F||e System Management [ManagemenJ Fleugxg:;nme%F S) | BSD Socket meﬂ;
— Device Drivers - N x
. H'gnif:m Protocol Drivers
« A system call provides ! J)

Interaction between
user application and
kernel services.

— Where direct calls are H
NOT allowed. T HARDWARE DEVICES
CENG3430 Lec08: Embedded Operating System B

KERNEL SPACE
T
o8
=, =
58
b~
.
T
g ¢
5 8
W
N
T
o
: —
38
O
" J

Software Stopwatch with Zyng-Linux?_s4.
* Question: Can we also ™ m«—» .

design an application to . =5)
realize a software ~ oo f; |
g *J"::I«* o = Ssasss .,
stopwatch on top of . 3 wo A EEE FIL
Zynq'LinMX? v }_'_’SD z—l Si’_-, . t_f’- HdPhn Out
U::‘; [3 I«-» USB.JART§ -% 12S/ACD 4——> ”"““ g tmi
o Answer: Yes, through ., opB. b | |2 —_— e
the GPIO interface. 8 ow S| i
: 0 VGA (12-
% VGA d bit color)
&

OLED ¢——» '”ﬁg Display

DONE ———4@) DONE LED

&
2l 6.6 s12voyte [DDREE«—> DOR
Linux/ . ==
=

Reset E—fl—D PS RST

Processing System (PS)

e (0 N . PROG < »; [o] PROG
The Zyng-Linux can be .
performed on the ARM . —
CPU (PS) of ZedBoard. Sy

CENG3430 Lec08: Embedded Operating System 10

General-Purpose Input/Output (GPIO) %,

General-purpose input/output (GPIO):

— Uncommitted digital signal pins on an integrated circuit or
board whose behavior—including whether it acts as input
or output—is controllable by the user at run time.

« Zyng-Linux defines 60 GPIO signals between PS and
PL via the extended multiplexed 1/O (EMIO) interface
to control the pins on the board (see system.ucf):

— USB OTG Reset: processing system7 0 GPIO<0>
— OLED: processing system7 0 GPIO<1>~<6>
— LED: processing system7 0 GPIO<7>~<14>
— Switches: processing system7 0 GPIO<15>~<22>
— Buttons: processing system7 0 GPIO<23>~<27>
— Pmod (JA~JD): processing system7 0 GPIO<28>~<59>
ote: These IDs should be shifted by 54 which is for MIO GPlOS)

CENG(3430 Lec08: Embedded Operating System

GPIO sysfs Interface

* One easiest way to control GPIO in Linux is through
the sysfs interface (/sys/class/gpio):

- sysfsis a pseudo file system provided by the Linux kernel

that exports information about various kernel subsystems,
hardware devices, and associated device drivers from the
kernel's device model to user space through virtual files.

USER

User Applications (e.g., shell script, c/c++, etc.)

SPACE

KERNEL
SPACE

GNU C Library]

System Call Interface

Virtual File System (VFS)

[VOIFS }[DriveFS][TmpFS][ProcFS][SysFS |
| /, /home /mnt/c /dev /proc

Hardware (e.g., LED, Switch, Pmods, etc.)

i -
.Ssh

virtual
3=| files

12

Dash Shell Script (#/bin/sh) i

oAl = & T

« Ashell script is a list of commands that can run by
the Unix shell directly in a sequential manner.

— Unix shell is a command line (or terminal) interpreter.

« Common commands of a shell script:
— Comment: # comment
— Arguments: $s0, $1, $2, ..
— Variable: $var
— Command: $ (command) or *command’
— Expression: $ ((expression))
— Loop: for 1 in $(seq 1 n) do .. done;
— Function Call: function_name parameters
— Read from File: “cat file_path™;

— Write to File: echo $value > file_path;
CENG3430 Lec08: Embedded Operating System 13

Outline

« Case Study: Embedded Linux

— Lab 09: Linux GPIO Stopwatch

CENG3430 Lec08: Embedded Operating System 14

Lab 09: Linux GPIO Stopwatch

* In Lab 09, we will implement a software stopwatch by
controlling LED, Switch and Pmod seven-segment
display using the shell script language.

ZedBoard Linux Shell Processing System (PS)
User LED ZedBoard Web
Control User LED Linux Application
. Script Startup
User Switch User Switch Script Web Content
Control Script Image
y Data -
SD Card «—» ok
USB il = »Browser
etwor
Peripherals | 5
AXl4-Lite
HDMI , HDMI
Video Displa
User e pay
Switch Display ~ OLED
Input ‘ Controller - Display
VGA
Eégr . GPIO Vieo | _ VCI3A
Output Programmable Logic (PL) |

Programmable Logic IP

CENG3430 Lec08: Embedded Operating System

Drivers / Application Examples (Linux)

15

Booting the ZedBoard from SD Card

The ZedBoard user specifies the method of booting /
programming via a set of jumper pins.
— The middle three are for specifying programming source.

MIO[6] | MIO[5] | MIO4] | MIOB3] | Miop) —Cascaded:Asingle JTAG
connection is used to interface to
In Xilinx Technical Boot Boot Boot Boot Boot the debug access ports in both the
Reference Manual... Mode[4] | Mode[0] | Mode[2] | Mode[l] | Mode[3] PS and PL.
JTAG Mode
Cascaded JTAG? - - - - 0
Independent JTAG - - - - 1
Boot Device
JTAG - 0 0 0 .
Quad-SPI (flash) - 1 0 0 : : o
SD Carda - 1 1 0 - \ , /, CW = -;)-;um u m
PLL Mode ‘
PLL Used? 0 - - - - The PLL mode determines whether
the process of configuring the
PLL Bypassed 1 - - - - device includes a phase of waiting

CENG3430 Lec02: Introduction to ZedBoard for the PLL to lock 16

Zynq Development Setup

 Joint Test Action Group (JTAG): Downloading designs

onto the development board over JTAG

« Universal Asynchronous Receliver/Transmitter (UART)

and Terminal Applications: Interfacing and debugging

Windows / Linux

computer

4GB+ RAM

Xilinx design tools

(3rd party tools)

USB (JTAG)

USB (UART)

CENG3430 Lec02: Introduction to ZedBoard

power

Zyng development board

17

Sample Script 1) read _sw.sh

#!/bin/sh

value=0;

for i in 01 2 345 6 7; # total 8 switches, GPIO ID from 69~76.
do
sw=5 ((76-%$1)) ;

sw_tmp="cat /sys/class/gpio/gpioS$sw/value’; # read the value
from the sw using corresponding gpioID

value=$ ((Svalue*2)); # adding the value in order, since we read
the binary value so using 2 instead of 10 here

value=$ (($Svaluet+$sw tmp)) ;

done;

printf "0x%x %d\n" Svalue Svalue; # print out value in both
hexadecimal & decimal format

CENG3430 Lec08: Embedded Operating System 18

Sample Script 2) write led.sh

#!/bin/sh
value=$ ((S1)); # arguments of the script (e.g., write led OxFF)

if [$value -ge 0]; then
for i in 01 2 3 45 6 7, # total 8 led, GPIO ID from 61~68

do
led=$ (($1+61)); # i—th gpiolID corresponding to led 1

echo $(($value&0x0l)) > /sys/class/gpio/gpio$led/value; # use
bit-wise and '&' to get the right-most bit and write to i-th gpio

value=$ ((Svalue/2)); # using divide operation to remove the
previous right-most bit

done;
fi;

CENG3430 Lec08: Embedded Operating System 19

Sample Script 3) single _count_down.sh

#!/bin/sh
display() { # display function
value=$1 # the first argument 1is
the number will be show in seven-
segment
echo $2 >
/sys/class/gpio/gpio93/value; # the
second argument defines which seven-—
segment will be used (gpio id 93 is
ssdcat)
for 1 in 01 2 34 5 6;
do
pin=5((92-51));
if [$1 -gt 2];
then
pin=$ ((Spin-4));
JA:82~85 / JB: 90~92
fi;
echo $(($value&0x01)) >
/sys/class/gpio/gpioSpin/value; #
output one segment
value=$ ((Svalue/2));
to next segment
done;

move

}
CENG3430 Lec08: Embedded Operating System

seven-segment display patterns,
refer to Lab sheet 6, here we
represent them in decimal values
p0=126;

pl=48;

p2=109;

£15=71;

for i in S$(seq 0 15); # display 0~15
do

idx=$ ((15-$i)); # count down the
number to be shown on the SSD

display $((pSidx)) 0; # invoke
the display function, argument #1 is
the pattern of the i-th number,
argument #2 is the ssdcat for
selecting the left/right seven-
segment

sleep 1; # delay one sec
done;

20

How to Run .sh Files?

« Glve execute permission to your script:
chmod +x /path/to/yourscript.sh

* Run your script (“.” refers to current directory):
/path/to/yourscript.sh

./yourscript.sh
v & COM13:115200baud - Tera Term VT l IEIM_1

File Edit Setup Ceontrol Window Help

L 1.3288881 Freeing init memory: 152K -~
Starting »rcS...

++ Mounting filesystem

++ Setting up mdevw

++ Configure static IP 172.168.1.10

L 1.5188801 GEM: 1lp—>tx_hd ffdfhBBA lp—>tx_hd_dma 18a366888 1p—>tx_skh dBahSec

-51888081 GEM: lp—>rx_bhd ffdfcBBB@ lp—>rx_bd_dma 1824460600 lp—>rx_skb d8ah5%c

52088081 GEM: MAC BxB0350a80. BxA0062201, B0:Ba:35:80:01:22

52800081 GEM: phydev d8b6h4BB,. phuydev—>phy_id Bx141B8ddl. phydev—->addr Bx8
-53808A1 ethB, phy_addr BxA, phy_id Ax@1418ddi

.5388881 ethd,. attach [Marvell 88E15161 phy driver

++ Starting telnet daemon

++ Starting http daemon

++ Starting ftp daemon

++ Starting dropbear {(ssh) daemon

++ Starting OLED Displavy

L 1.5786868]1 pmodoled—gpio—spil [zed_oled] SFI Probing

++ Exporting LEDs & Sls

rcS Complete
zyng> read_sw & Not necessary to have the file extension in Linux
Eung

P ok ke

1|

CENG3430 Lec08: Embedded Operating System 21

Summary

 Embedded Operating System
— Why Embedded Operating Systems
— Types of Operating Systems
— Zynqg Operating Systems

« Case Study: Embedded Linux
— Linux System Overview
— Linux Kernel
— Linux GPIO Driver: GPIO sysfs Interface
— Shell Script
— Lab 09: Linux GPIO Stopwatch

CENG3430 Lec08: Embedded Operating System

22

